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SUMMARY

Mixed finite element (MFE) and multipoint flux approximation (MPFA) methods have similar properties
and are well suited for the resolution of Darcy’s flow on anisotropic and heterogeneous domains.

In this work, the link between hybrid and MPFA formulations is shown algebraically for the lowest
order mixed methods of Raviart–Thomas (RT0) and Brezzi–Douglas–Marini (BDM1) on triangles. The
efficiency of the four mixed formulations (Hybrid RT0, MPFA RT0, Hybrid BDM1 and MPFA BDM1) is
investigated on high anisotropic and heterogeneous media and for unstructured triangular discretizations.

Numerical experiments show that the MPFA BDM1 formulation outperforms both Hybrid RT0 and
Hybrid BDM1 in the case of anisotropic domains and highly unstructured meshes. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the numerical solution of the following partial differential equation (PDE):

∇(−K∇ p) = f in �

P = Pe on ��D

−K
�P
��

= g on ��N

(1)

∗Correspondence to: Anis Younes, Institut de Mécanique des Fluides et des Solides, Université Louis Pasteur de
Strasbourg-CNRS/UMR 7507, 2 rue Boussingault, F-67000 Strasbourg, France.

†E-mail: younes@imfs.u-strasbg.fr

Copyright q 2008 John Wiley & Sons, Ltd.



1042 A. YOUNES AND V. FONTAINE

where � is a bounded polygonal open set of R2, ��D and ��N are partitions of the boundary ��
of � corresponding to Dirichlet and Neumann conditions and � the unit outward vector normal to
the boundary ��.

The PDE (1) is a very common mathematical model in physics used to simulate steady-state
diffusion processes such as heat or mass transfer or flow in porous media.

In the context of flow in porous media, considered in this paper, the state variable p corresponds
to the pressure or the piezometric head, K is a symmetric positive-definite permeability tensor and
f the sink/source term.
The mixed finite element (MFE) method is well suited for the discretization of (1) since it

is locally conservative and handles general irregular grids with anisotropic and heterogeneous
permeability [1].

The MFE method uses both the velocity and the pressure as primary unknowns. To this aim,
Darcy’s velocity q is introduced as an additional unknown and PDE (1) is transformed to the
following system:

q = −K∇ p

∇q = f
(2)

Mixed methods have been extensively employed during the past few years ([1–9], among others).
For practical applications, lowest-order mixed methods of Raviart–Thomas (RT0) or Brezzi–
Douglas–Marini (BDM1) are usually used and will be considered in the current paper. Both RT0
and BDM1 use a piecewise constant approximation for the pressure [3]. The velocity space has
three degrees of freedom with RT0 and six with BDM1.

In their original form, the mixed methods require the resolution of systems of algebraic equations
that are typically indefinite [3, 10]. This problem is generally circumvented by hybridization [11],
which is the most widely used approach. System (2) is solved in this case for the pressure Lagrange
multipliers at element edges.

Many authors tried to reduce the number of unknowns for RT0 and to find the link with the
standard finite volume method. For rectangular meshes, the RT0 mixed method can be reduced to
the standard cell-centred finite volume method, when numerical integration with quadrature rules
is used [12, 13]. This procedure was extended to triangular meshes [14, 15], but the diagonalization
of the elemental matrix by numerical quadrature appears to be an accurate approximation only if
triangles have three sharp angles. Reduction to one unknown per element without any numerical
integration has been obtained in [6, 8, 16] for triangular elements.

Recently, mixed methods were related to a new finite volume method called multipoint flux
approximation (MPFA) method. The MPFA discretization is a control volume formulation where
more than two pressure values are used in the flux approximation [17–20]. Indeed, it was shown
in [21] that the RT0 MFE method is equivalent to a particular non-symmetric MPFA method,
and this without any numerical integration. On the other hand, the use of a specific quadrature
rule with BDM1 method allows for local flux elimination and can be shown to be equivalent to a
symmetric MPFA method [22–26].

In this paper, we show algebraically the link between hybrid and MPFA formulations of both
RT0 and BDM1 methods on triangular meshes. These meshes are suitable for practical problems
with complex geometry and local mesh refinement. The efficiency and accuracy of the four mixed
formulations (Hybrid RT0, MPFA RT0, Hybrid BDM1 and MPFA BDM1) are investigated on
high anisotropic and heterogeneous media and with unstructured triangular discretizations.
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HYBRID AND MULTI-POINT FORMULATIONS 1043

2. THE HYBRID FORMULATION OF RT0 AND BDM1

The idea of hybridization goes back to Fraeijs de Veubeke [27]. The assumption that the velocity
is continuous across elements boundary is dropped. New variables corresponding to the pressure at
edges, assumed to be constant for RT0 and linear for BDM1, are defined and viewed as Lagrange
multiplier. The velocity space can then be eliminated at the element level, and an extra equation
is added to ensure continuity of the normal component of the velocity. The principal stages of the
hybrid formulation of RT0 and BDM1 are summarized in this section.

2.1. Approximation spaces

Let us consider the triangular element A with three edges Ai and let Â denote the reference triangle
with vertices (0,0), (1,0) and (0,1).

The solution of the system (2) is approximated over A by PA∈R, the constant value of P over
the element A. The velocity q over A is approximated by qA∈XA, where XA is the RT0 or the
BDM1 space [1, 28].

With RT0, qA may be expressed as

qA=
3∑

i=1
QA

i x
RT0
i (3)

The normal component of the velocity, qA ·nAi , is constant over the edge Ai . The velocity inside
the element has three degrees of freedom: one degree of freedom per edge (see Figure 1).

The expressions of the vectorial basis functions, in the reference element, are given in Table I
and obtained from

x̂RT0i =
(
aRT0i +bRT0i x̂

cRT0i +bRT0i ŷ

)
for i=1, . . . ,3 (4)

where x̂, ŷ are coordinates on the reference element.
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Figure 1. Degrees of freedom and basis functions for RT0 and BDM1 spaces on triangles.
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1044 A. YOUNES AND V. FONTAINE

Table I. Vectorial basis functions for RT0 and BDM1 in the reference element.

RT0 BDM1

Edge 1 x̂RT01 =(x̂, ŷ−1)T x̂BDM1
1,1 =2(0, x̂+ ŷ−1)T, x̂BDM1

1,2 =2(x̂,−x̂)T

Edge 2 x̂RT02 =(x̂−1, ŷ)T x̂BDM3
2,1 =2(x̂+ ŷ−1,0)T, x̂BDM1

2,2 =2(−ŷ, ŷ)T

Edge 3 x̂RT03 =(x̂, ŷ)T x̂BDM1
3,1 =2(x̂,0)T, x̂BDM1

3,2 =2(0, ŷ)T

On the edge Al , we set ∫
Al
x̂RT0i nAl =�il for l=1, . . . ,3 (5)

Hence, ∫
A
∇xRT0i =

∫
Â
∇x̂RT0i =1 for i=1, . . . ,3 (6)

with BDM1, qA may be expressed as

qA=
3∑

i=1

2∑
j=1

QA
i, jx

BDM1
i, j (7)

The normal component of the velocity is linear on each edge. The velocity inside the element has
six degrees of freedom: two degrees of freedom per edge (see Figure 1).

In this work, the degrees of freedom on each edge are associated with the values of qA ·nAi at
the vertices of the edge Ai as in [24, 29]. This choice guarantees certain orthogonalities for the
quadrature rule (introduced later in Section 4.2).

The expressions of the vectorial basis functions, in the reference element, are given in Table I
and obtained from

x̂BDM1
i, j =

(
aBDM1
i, j +bBDM1

i, j x̂+cBDM1
i, j ŷ

dBDM1
i, j +eBDM1

i, j x̂+ f BDM1
i, j ŷ

)
for i=1, . . . ,3 and j =1, . . . ,2 (8)

and by setting, on the edge Al with the two end points (vertices) rlk(k=1,2),

x̂BDM1
i, j (rlk)nAl =2�il� jk for l=1, . . . ,3 and k=1,2 (9)

Hence, ∫
A
∇xBDM1

i, j =
∫
Â
∇x̂BDM1

i, j =1 for i=1, . . . ,3 and j =1, . . . ,2 (10)

With the hybrid formulation of MFE, the continuity of the normal component is forced via the
Lagrange multiplier, which is viewed as the pressure on the edge. This edge pressure is assumed
to be constant, with one degree of freedom corresponding to TPi , the mean value of the pressure
on the edge Ai , for RT0. For BDM1, the edge pressure is linear, with two degrees of freedom
corresponding to TPi,1 and TPi,2, the edge pressure values at two points on edge Ai .
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HYBRID AND MULTI-POINT FORMULATIONS 1045

2.2. Discretization with RT0

The variational formulation of Darcy’s law (K−1q=−∇ p) is expressed using the vectorial basis
functions xRT0i as test functions:∫

A
K−1qAx

RT0
i =−

∫
A
∇PxRT0i =

∫
A
P∇xRT0i −

3∑
k=1

∫
Ak

PxRT0i nk (11)

Using (5) and (6), we obtain ∫
A
K−1qAx

RT0
i = PA−TPA

i (12)

Using (3), (12) can be expressed in the following matrix form:

3∑
k=1

Bi,k Q
A
k = PA−TPA

i (13)

where the elemental matrix B=[Bi,k] of dimensions (3×3) is defined by

Bi,k =
∫
A
xRT0,Ti K−1xRT0k (14)

This matrix can be evaluated analytically in the reference element using

Bi,k =
∫
A
x̂RT0,Ti K̂−1x̂RT0k (15)

where K̂−1= JTK−1 J/|J | corresponds to the analog tensor in the reference element, and J is
Jacobian matrix that is constant for triangular elements.

The matrix B is symmetric and positive definite. Equation (13) can be expressed as

QA
i =

3∑
k=1

B−1
i,k (PA−TPA

k ) (16)

The mass balance equation in (2) is discretized using a finite volume formulation in space:

3∑
i=1

QA
i =|A| f A=QA

s (17)

f A is the mean value of f over the element A.
Combining (16) and (17) gives

PA=
3∑

i=1

�i
�
TPA

i + QA
s

�
(18)

where �i =∑3
k=1 B

−1
i,k and �=∑3

i=1 �i .
Finally, the expression of the flux is given by replacing (18) in (16):

QA
i = �i

�

3∑
k=1

�kTP
A
k −

3∑
k=1

B−1
i,k TP

A
k + �i

�
QA

s (19)
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1046 A. YOUNES AND V. FONTAINE

The scalar unknowns with the hybrid formulation of RT0 are the mean pressures on the edges
(TPA

i , i=1, . . . ,n f ).
The final system of equations is obtained using continuity properties as follows:

• On all interior edges, continuity of the normal component of the velocity and edge pressure
between the two adjacent elements A and B may be expressed as

TPA
i =TPB

i and QA
i +QB

i =0 (20)

• For a Dirichlet boundary edge Ai with a prescribed pressure TPbc
i , we have

TPA
i =TPbc

i (21)

• For a Neumann boundary edge with a given flux Qbc
i

QA
i =Qbc

i (22)

The hybrid formulation of RT0 gives a system for the number of edge unknowns with a
symmetric positive matrix of a five-point stencil.

2.3. Discretization with BDM1

The variational formulation of Darcy’s law (K−1q=−∇ p) using the vectorial basis functions
xBDM1
i, j as test functions may be expressed as∫

A
K−1qAx

BDM1
i, j =−

∫
A
∇PxBDM1

i, j =
∫
A
P∇xBDM1

i, j −
3∑

k=1

∫
Ak

PxBDM1
i, j nk (23)

Setting TPi,1 and TPi,2 to the edge pressure values at 1
3 and 2

3 of the edge and using (7), the
previous equation leads to

3∑
k=1

2∑
l=1

QA
k,l

∫
A
xBDM1,T
i, j K−1xBDM1

k,l = PA−TPA
i, j (24)

The element al matrix B=[Bi, j,k,l ] is of dimensions (6×6) with

Bi, j,k,l =
∫
A
xBDM1,T
i, j K−1xBDM1

k,l (25)

where B is a positive-definite matrix evaluated analytically in the reference element.
The same calculations as with the RT0 lead to

QA
i, j =

3∑
k=1

2∑
l=1

B−1
i, j,k,l(P

A−TPA
k,l) (26)

and

PA=
3∑

i=1

2∑
j=1

�i, j
�

TPA
i, j +

QA
s

�
(27)

where �i, j =∑3
k=1

∑2
l=1 B

−1
i, j,k,l and �=∑3

i=1
∑2

j=1 �i, j .
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Replacing (27) in (26) leads to

QA
i, j =

�i, j
�

3∑
k=1

2∑
l=1

�k,lTP
A
k,l −

3∑
k=1

2∑
l=1

B−1
i, j,k,lTP

A
k,l +

�i, j
�

QA
s (28)

With this formulation, the scalar unknowns are discrete pressures at edges (TPA
i, j , i=1, . . . ,n f and

j =1, . . . ,2). The final system of equations is obtained using continuity properties as with RT0.
The hybrid formulation of BDM1 leads to a system of twice the number of edge unknowns

with a symmetric positive matrix of a 10-point stencil.

3. THE MPFA METHOD ON TRIANGLES

3.1. The MPFA method

The MPFA discretization is a control volume formulation, where more than two pressure values
are used in the flux approximation. The scheme reduces to a cell-centred stencil for the pressures
[17–20].

The basic idea of the MPFA method is to divide each triangle into four subcells (Figure 2).
Inside the subcell (xi ,x2i ,x,x

1
i ) of the corner xi , we assume linear variation of the pressure between

�1i (the pressure at the midpoint edge x1i ), �2i (the pressure at the midpoint edge x2i ) and PA (the
pressure at the centre x̄ of element A) (Figure 2).

Therefore, subedge (half-edge) fluxes,(
Q1

i =
∫ x1i

xi
−K∇P and Q2

i =
∫ x2i

xi
−K∇P

)

kx

ix

x
2
ix

1
ix

1
iQ

2
iQ

jx

Figure 2. Triangle splitting into four subcells and linear pressure approximation on each subcell.
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1048 A. YOUNES AND V. FONTAINE

kx ix

jx

1
iQ

1A

2A

3A

4A

5A

Figure 3. The interaction region sharing vertex i .

taken positive for outflow, are given by(
Q1

i

Q2
i

)
= 1

2|Tx̄x1i x2i |

(
(x1i −xi )⊥K(x2i − x̄)⊥ (x1i −xi )⊥K(x̄−x1i )

⊥

(xi −x2i )
⊥K(x2i − x̄)⊥ (xi −x2i )

⊥K(x̄−x1i )
⊥

)
︸ ︷︷ ︸

GA
i

(
�1i −PA

�2i −PA

)
(29)

where |Tx̄x1i x2i | is the area of the triangle spanned by the points x̄, x1i and x2i and, for example, the

vector (x1i −xi )⊥ is obtained by a �/2 rotation of the vector x1i −xi .
All subcells sharing vertex xi create an interaction volume (see Figure 3).
The discretization is accomplished by assuming continuous fluxes across each of the subedges

and a weak continuity condition of the pressure across the same edges. From these assumptions,
an explicit discrete flux can be found after resolution of a local linear system and eliminating the
edge pressure for each subedge of the interaction volume (see [19] for details). Each subedge flux
can then be expressed explicitly as a weighted sum of the cell pressures of the interaction volume.
For example, for Figure 3, we obtain

Q1
i =

5∑
k=1

tki P
Ak (30)

where tki are transmissibility coefficients and Ak are located at the gravity centre of the triangles.

3.2. Localization of continuity points: Symmetric or non-symmetric MPFA formulations

The final system of MPFA is obtained by expressing the mass balance over each triangle: sum of
the six subedge fluxes of the element equals the sink/source term over that element. The resulting
mass matrix can be symmetric or non-symmetric depending on the localization of the continuity
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Figure 4. Two locations of the continuity point at the subcell interface. Local
pressure support for w=1.0 and 2

3 .

points. Indeed, as shown in [17], symmetry of the global matrix is guaranteed only if this property
is respected for each local matrix GA

i .
On the other hand, continuity of the pressure is generally prescribed at the element-edge

midpoint. This corresponds to w=|x1i −xi/xi j−xi |=1 with xi j =(xi +x j )/2 (see Figure 4). In this
case, the local matrix GA

i in (29) is always non-symmetric.
However, as shown in [30], there is flexibility in the location of the continuity point. Its position

can be chosen to lie at any point between the edge midpoint and the vertex (Figure 4).
The symmetry is achieved when the continuity point is localized at w= 2

3 (Figure 4). In this
case, x1i ,xi ,x

2
i , x̄ is a parallelogram and the local matrix GA

i in the half-edge fluxes expression
(29) becomes

GsAi = 1

2|Tx̄x1i x2i |

(
(xi j −xi )⊥K(x2i − x̄)⊥ (xi j −xi )⊥K(x̄−x1i )

⊥

(xi −xik)⊥K(x2i − x̄)⊥ (xi −xik)⊥K(x̄−x1i )
⊥

)
(31)

which can be shown to be symmetric when replacing x̄=(xi +x j +xk)/3, xi j =(xi +x j )/2, xik =
(xi +xk)/2, x1i =xi/3+2xi j/3 and x2i =xi/3+2xik/3.

Therefore, one can obtain a symmetric MPFA formulation for general triangular elements
without any approximate numerical integration. Recall that for quadrilateral grids, the MPFA
method leads to a symmetric matrix only in the case of parallelograms (constant Jacobian).
For quadrilateral elements, numerical quadrature allows the formulation of a symmetric MPFA
formulation which, has similar convergence behaviour as the standard formulation for h2-perturbed
parallelograms [22, 23, 26]. However, a loss of convergence has been observed for the symmetric
MPFA formulation on rough grids [23, 26].

4. THE MPFA FORMULATION OF RT0 AND BDM1

In this section, we show, algebraically, the link between hybrid and MPFA formulations of both
RT0 and BDM1 mixed methods.
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1050 A. YOUNES AND V. FONTAINE

4.1. The MPFA formulation of RT0

In the case of triangles, the inverse of the elemental matrix B, defined by (15), gives [16]

[B]−1= det(K)

|A|

⎡⎢⎢⎢⎣
xi jK−1xi j xi jK−1xki xi jK−1x jk

xkiK−1xi j xkiK−1xki xkiK−1x jk

x jkK−1xi j x jkK−1xki x jkK−1x jk

⎤⎥⎥⎥⎦+ 1

3�

⎡⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤⎥⎥⎦ (32)

The dimensionless shape coefficient � is defined by [6]

�=
3∑
j=1

Bi j (33)

Equation (18) becomes

PA=
(
TPA

1 +TPA
2 +TPA

3

3

)
+ �

3
QA

s (34)

Recall that the fluxes across edges are given by

QA
i =

3∑
k=1

B−1
i,k (PA−TPA

k ) (35)

The expression of TPA
3 is obtained from (34) and is then replaced in (35). The substitution of (32)

into (35) gives the fluxes across the two first edges:

(
QA

1

QA
2

)
= det(K)

|A|

⎛⎝x12K−1(x23−x12) x12K−1(x23−x31)

x31K−1(x23−x12) x31K−1(x23−x31)

⎞⎠⎛⎝(TPA
1 −PA)

(TPA
2 −PA)

⎞⎠

+QA
s

⎛⎜⎜⎜⎝
det(K)

|A| (x12K−1x23)�+ 1

3

det(K)

|A| (x32K−1x23)�+ 1

3

⎞⎟⎟⎟⎠ (36)

Using the following properties on triangles:

det(K)

|A| xi jK−1(x jk−xi j )= 1

4|Tx̄x1i x2i |
(x1i −xi )⊥K(x2i − x̄)⊥

det(K)

|A| xi jK−1(x jk−xki )= 1

4|Tx̄x1i x2i |
(x1i −xi )⊥K(x̄−x1i )

⊥
(37)
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HYBRID AND MULTI-POINT FORMULATIONS 1051

the fluxes (36) with RT0 become(
QA

1

QA
2

)
= 1

4|Tx̄x11x21 |

(
(x11−x1)⊥K(x21− x̄)⊥ (x11−x1)⊥K(x̄−x11)

⊥

(x1−x21)
⊥K(x21− x̄)⊥ (x1−x21)

⊥K(x̄−x11)
⊥

)(
(TPA

1 −PA)

(TPA
2 −PA)

)

+QA
s

⎛⎜⎜⎝
det(K)

|A| (x12K−1x23)�+ 1

3

det(K)

|A| (x32K−1x23)�+ 1

3

⎞⎟⎟⎠ (38)

Therefore, half-edge fluxes can be expressed in the following form:(
Q1

1

Q2
1

)
=[GA

1 ]
(

�11−PA

�21−PA

)
+
(
Qs11

Qs21

)
(39)

where [GA
1 ] is given by (29), Q1

1=QA
1 /2, Q2

1=QA
2 /2, �11=TPA

1 , �21=TPA
2 and

(
Qs11

Qs21

)
=

⎛⎜⎜⎜⎝
det(K)

2|A| (x12K−1x23)QA
s �+ QA

s

6

det(K)

2|A| (x31K−1x23)QA
s �+ QA

s

6

⎞⎟⎟⎟⎠ (40)

Therefore, the MPFA formulation of the lowest RT0 mixed method can be obtained by (i) using
(29) on the interaction volume (Figure 3) instead of (29) and (ii) assuming continuity of fluxes
and pressure across the subedges of the interaction volume.

Contrary to the standard MPFA method, each subedge flux is now expressed explicitly as a
weighted sum of not only the cell pressures but also the cell sink/source terms of the elements in
the interaction volume. For example, for Figure 3 we obtain

Q1
i =

5∑
k=1

tki P
Ak +

5∑
k=1

�ki QsAk (41)

The final system for the MPFA formulation of the RT0 MFE method is then obtained when the
mass balance is expressed over each triangle. This MPFA formulation is equivalent to the mixed
hybrid formulation, and this without any numerical integration [21]. In the case of steady-state
flow without sink/source terms, (39) reduces to (29) and the MPFA mixed formulation of RT0 is
algebraically equivalent to the standard MPFA method.

4.2. The MPFA formulation of BDM1

Contrary to RT0, numerical integration is required to construct the MPFA formulation of BDM1.
To this aim, the local matrix [B], given in (25), is evaluated using the following quadrature rule
[3, 24]:

Bi, j,k,l =
∫
Â
x̂BDM1,T
i, j K̂−1x̂BDM1

k,l � | Â|
3

[(x̂BDM1,T
i, j K̂−1x̂BDM1

k,l )(0,0)+(x̂BDM1,T
i, j K̂−1x̂BDM1

k,l )(1,0)

+(x̂BDM1,T
i, j K̂−1x̂BDM1

k,l )(0,1)] (42)
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Recall that from (9), we have on the edge Al with the two end points (vertices) rlk (k=1,2),

x̂BDM1
i, j (rlk)nAl =2�il� jk for l=1, . . . ,3 and k=1,2 (43)

Therefore, using (42) and (43) to compute the local matrix [B] gives a block-diagonal matrix where
only the two vectorial basis functions associated with a corner x̂i are coupled. The (6×6) linear
system (26) reduces to three (2×2) linear systems (one for each vertex). For example, for vertex 1
of coordinates (0,0) in Figure 3, only x̂BDM1

1,1 and x̂BDM1
2,1 are non-zero and the corresponding

(2×2) local system is

1

6

⎛⎝(x̂BDM1,T
1,1 K̂−1x̂BDM1

1,1 )(0,0) (x̂BDM1,T
1,1 K̂−1x̂BDM1

2,1 )(0,0)

(x̂BDM1,T
1,1 K̂−1x̂BDM1

2,1 )(0,0) (x̂BDM1,T
2,1 K̂−1x̂BDM1

2,1 )(0,0)

⎞⎠(QA
1,1

QA
2,1

)
=
(
PA−TPA

1,1

PA−TPA
2,1

)
(44)

Substituting expressions of x̂BDM1
1,1 and x̂BDM1

2,1 from Table I in (44) and inverting the obtained
local system leads to the following formulation:(

Q1
i

Q2
i

)
=[GsAi ]

(
�1i −PA

�2i −PA

)
(45)

where [GsAi ] is the local matrix given in (31) and Q1
i =QA

1,1, Q
2
i =QA

2,1, �1i =TPA
1,1, �2i =TPA

2,1.
Therefore, this system is equivalent to the symmetric MPFA system obtained when the continuity

point is localized at w= 2
3 (Figure 4).

In conclusion, the MPFA formulation of the BDM1 mixed method on triangles is obtained by
using a special quadrature rule that reduces the BDM1 method to the symmetric MPFA method.

5. EFFICIENCY OF HYBRID AND MIXED FORMULATIONS OF RT0 AND BDM1

This section is devoted to the numerical efficiency and accuracy of the four mixed formulations
(Hybrid RT0, MPFA RT0, Hybrid BDM1 and MPFA BDM1) on high anisotropic and heteroge-
neous media with unstructured triangular discretizations.

Properties of the four mixed formulations are summarized in Table II. It is clear from this table
that the MPFA RT0 is the less efficient formulation. This formulation is generally avoided for
very large systems. Indeed, this formulation does not lead to a symmetric positive-definite matrix
for general problems. Consequently, the obtained system cannot be solved with standard iterative
solvers based on the conjugate gradient method.

Table II. Properties of Hybrid RT0, MPFA RT0, Hybrid BDM1 and MPFA BDM1 formulations.

Hybrid RT0 MPFA RT0 Hybrid BDM1 MPFA BDM1

Numerical quadrature No No No Yes
Symmetric and positive-definite matrix Yes No Yes Yes
Number of unknowns Nbr-edges Nbr-elements 2×Nbr-edges Nbr-elements
Stencil 5 ≈15 10 ≈15
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The MPFA RT0 formulation is therefore excluded, and the rest of the paper is devoted to the
numerical efficiency of the three formulations: Hybrid RT0, Hybrid BDM1 and MPFA BDM1.
These three formulations give symmetric positive-definite matrix systems.

5.1. Numerical experiments

We define a test problem to study the efficiency of mixed formulations. The system (1) is solved
on a unit square shape �=(0,1)2 domain with anisotropic and heterogeneous permeability field.
The tensor coefficient and the true solution for the test problem are similar to the test problem
given in [31]

K =
[
y2+�x2 (�−1)xy

(�−1)xy x2+�y2

]
(46)

P(x, y)=exp

(
−20�

((
x− 1

2

)2

+
(
y− 1

2

)2
))

(47)

The behaviours of all formulations are studied numerically for different anisotropies and different
triangular discretizations.

For practical test cases, a high accuracy for the velocity field is often required (as, for example,
for the simulation of transport of contaminant). The velocity error is investigated in the discrete
L2-norm defined by

evL2 =
(∑

i
|Ai |(qan,i −qi )2

/∑
i

|Ai |
)1/2

(48)

where |Ai | is the area of element i and qan,i the analytical velocity evaluated at the centre of i
obtained by the derivation of (47).

5.1.1. The isotropic case on structured meshes. The test problem is first solved for the isotropic
case (�=1) with different meshes. The first level of refinement is obtained from a discretization
of a (25×25) square. The triangulation is obtained by subdivision of each square into four equal
triangles by joining the centre of the square to its vertices. Finer discretizations are obtained
starting from grids of (50×50), (100×100) and (200×200) squares. Table III gives results
with the Hybrid RT0, Hybrid BDM1 and MPFA BDM1 formulations for different levels of mesh
refinement.

The linear system obtained by the three formulations is solved with the iterative preconditioned
conjugate gradient solver. This solver is efficient and largely used in numerical codes. In this
work, the solver is preconditioned with the Eisenstat procedure [32] and the tolerance is fixed to
10−16. The total number of unknowns Nunk, the number of iterations Nit required by the solver to
reach the convergence , the central processing unit (CPU) time tCPU and velocity error are given
in Table III.

Results of this table show that

• The CPU cost of the MPFA BDM1 and Hybrid RT0 are very close, especially for fine meshes.
This is due to the fact that MPFA BDM1 formulation has less unknowns but with a wider
stencil than Hybrid RT0 formulation.
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Figure 5. Velocity errors with Hybrid-RT0, Hybrid BDM1 and MPFA BDM1 for different meshes.

• The Hybrid BDM1 formulation requires less CPU time than Hybrid RT0 to achieve a fixed
velocity accuracy (Figure 5).

• In the case of structured mesh and isotropic domain, the MPFA BDM1 gives more accurate
results than Hybrid RT0 but less than Hybrid BDM1.

5.1.2. Effects of anisotropy. The test problem is now simulated with different anisotropy factors
and uses the coarser discretization described above.

Results of simulations, given in Table IV, show that

• The number of iterations and the CPU time increase when � increases for the three formula-
tions.

• For anisotropic domains, the pressure solution presents non-physical oscillations (nega-
tive values). These oscillations are much more pronounced with Hybrid RT0 than with
Hybrid BDM1 or MPFA BDM1.

• The CPU time of MPFA BDM1 becomes very close to the CPU time of Hybrid RT0 when
� increases (Figure 6).

• The velocity error of the three formulations is highly dependent on the anisotropy factor
(Figure 7).

• When � increases, the velocity error of MPFA BDM1 becomes very close to Hybrid BDM1
error. However, MPFA BDM1 requires four times less CPU time than Hybrid BDM1.

These results show that MPFA BDM1 is well suited for high anisotropic domains since it has the
accuracy of Hybrid BDM1 and the rapidity of Hybrid RT0.

5.1.3. Effects of mesh distortion. Mesh distortion can have an important effect on the solution of
the numerical method. For example, it was shown in [23, 26] that on rough quadrilateral grids, a
loss of convergence can be observed for the MPFA BDM1 formulation. In this section, we study
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Figure 6. CPU time with Hybrid RT0, Hybrid BDM1 and MPFA BDM1 for different anisotropy factors.
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Figure 7. Velocity errors with Hybrid RT0, Hybrid BDM1 and MPFA BDM1
for different anisotropy factors.

this effect on the behaviour of the solution of Hybrid RT0, Hybrid BDM1 and MPFA BDM1
formulations.

The previous triangulations are obtained from subdivision of squares. To obtain a highly unstruc-
tured triangulation, the centre of each square is moved randomly inside the square. Four different
triangles are obtained by joining this point to the vertices of the square.

This procedure is performed at each level of refinement. Figure 8 shows the unstructured
triangular mesh obtained from the coarser discretization.
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Figure 8. Unstructured triangulation obtained from randomly moving the centre of squares.

Results for different unstructured meshes with a coefficient of anisotropy of �=50 are given in
Table V and Figures 9 and 10. These results show that

• The symmetric MPFA formulation on triangles is highly efficient on unstructured meshes and
MPFA BDM1 results are not deteriorated on unstructured meshes.

• The Hybrid RT0 gives less stable pressure results than Hybrid BDM1 and MPFA BDM1.
The maximum pressure value with Hybrid RT0 is greater than 1 for all meshes.

• Concerning pressure errors, MPFA BDM1 is the more efficient method. Indeed, for a given
pressure error of 5×10−4, MPFA BDM1 spends 20 times less CPU time than Hybrid RT0
and four times less than Hybrid BDM1 (Figure 9).

• Similar performances are obtained for MPFA BDM1 concerning velocity errors. Indeed,
MPFA BDM1 can spend 10 times less CPU time than Hybrid RT0 and three times less than
Hybrid BDM1 for a given velocity error (Figure 10).

These results show that the MPFA BDM1 formulation outperforms both Hybrid RT0 and
Hybrid BDM1 formulations for anisotropic domains and unstructured triangular meshes.

6. CONCLUSION

In this paper, hybrid and MPFA formulations of both RT0 and BDM1 mixed methods were
developed. The link between these formulations was shown algebraically for RT0 and BDM1 on
triangular meshes.

The MPFA RT0 formulation is obtained without any numerical integration from the mixed
formulation. Whereas, the MPFA BDM1 formulation is obtained by using a special quadrature
rule that reduces the BDM1 method to the symmetric MPFA method.
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Figure 9. Pressure errors with Hybrid RT0, Hybrid BDM1 and MPFA BDM1 on unstructured meshes.
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Figure 10. Velocity errors with Hybrid RT0, Hybrid BDM1 and MPFA BDM1 on unstructured meshes.

Performance of the four mixed formulations (Hybrid RT0, Hybrid BDM1, MPFA RT0 and
MPFA BDM1) was investigated on anisotropic and heterogeneous media with unstructured meshes.

The MPFA RT0 is the less efficient formulation. It uses fewer unknowns than Hybrid RT0 but
the matrix of the discrete system is non-symmetric and is not positive definite.

Numerical experiments show that, in general, BDM1 formulations (Hybrid BDM1 and
MPFA BDM1) require less CPU time than Hybrid RT0 to achieve a fixed velocity accuracy. The
accuracy of the MPFA BDM1 formulation is not deteriorated for highly unstructured triangular
meshes (contrarily to quadrilateral meshes where a loss of convergence can be encountered
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for rough grids). For highly anisotropic domains and unstructured meshes, the MPFA BDM1
formulation outperforms both Hybrid RT0 and Hybrid BDM1 and appears to be the successful
choice when a high accuracy for the velocity field is required.
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